Optimal Reconfiguration and Distributed Generation placement in Baghdad Distribution Sector

Abstract - The power losses in distribution system are high, which form 70 – 80% of total transmission and distribution losses. High losses have severe impact on stability, reliability as well as economy. Therefore, minimization of these losses is very necessary. In this paper proposed various schemes to reduce the active power losses in distribution network, given as:
- Optimum reconfiguration network,
- Optimum Distributed Generation (DG) placement and
- Optimum reconfiguration with optimum (DG) placement.

Using Cymdist software to implement the optimal reconfiguration algorithm and proposed Genetic Algorithm (GA) to find the size and location, which programmed under MATLAB software package. Whereon the proposed methodology (GA) simplifies the problem by dividing it in two phases, namely Placement Planning Model (PPM) and Size Planning Model (SPM) thereby reducing the search space. It was the integration of the two methods were used after each method individually to obtain minimum real power losses with better bus voltage (better efficiency for network). To verify the proposed algorithms, IEEE 33-bus system and al – jihad neighborhood distribution system (Baghdad distribution sector) are tested. The simulation results are compared with proposed works in literature.

Keywords - Power Losses, Reconfiguration, Distributed Generation, Genetic Algorithm, Cymdist, and MATLAB.

1. Introduction

High R/X ratio and voltage drop causing high losses in distribution networks, which account for 80% of total transmission and distribution losses. Distribution power losses can be divided into two categories technical and non-technical losses. The technical losses area related to the material properties and its resistance to the flow of the electrical current that is dissipated as heat. The most obvious examples are the power dissipated in distribution lines and transformers due to their internal electrical resistance. In addition, technical losses are easy to be simulated and calculated. On the other hand, non-technical losses are caused by clandestine connections, frauds in energy meters, diversity of readings and deficiencies (or losses) in the processes of energy measurement [1].

The growth of electrical demand required to develop radial distribution system (RDS) not by build more power plant but by finding local solution like (Distributed Generation (DG)) . The passive RDS construction (shape) is change by adding DG or shunt-capacitor–bank to become active. The modern power distribution network is constantly being faced with an ever-growing load demand, this increasing load is resulting into increased burden and reduced voltage [2].

The distribution network also has a typical feature that the voltage at nodes reduces if moved away from substation. This decrease in voltage is mainly due to insufficient amount of “Reactive power”. Even in certain industrial area critical loading, it may lead to voltage collapse. Thus to improve the voltage profile and to avoid voltage collapse reactive compensation is required. It is well known that loss in a distribution networks are significantly high compared to that in a transmission networks. Such non-negligible losses have a direct impact on the financial issues and overall efficiency of distribution utilities. The need of improving the overall efficiency of power delivery has forced the power utilities to reduce the losses at distribution level [3].
i. Network Re-conductoring.
ii. Distribution transformer locating and sizing.
iii. Automatic voltage booster.
iv. High voltage distribution system.
v. Reactive power compensation.
vi. Distribution generation locating and sizing.
vii. Building new substation [4].

2. Problem Formulation

The main purpose of the use of the mathematical formula is to reduce losses and improve voltage and get the better performance of the network and the accompanying reduce the cost of design and operational and the promise of a future plan to cover population growth of consumer demand for electric power. This section describes the formulation of losses reduction in distribution system using various techniques given as:

- Optimal configuration network.
- Optimal DG placement and sizing.

Mathematical Formulation

The major aim of math equation to determine the optimal rating and siting of DG and Reconfiguration in distribution bus system in order to minimize as possible as the loss of RDN (Radial Distribution Network) [5] with voltage profile improvement. Figure (1) shows a branch of balance bus system that will adding to its DG

The active power (P_i) and reactive (Q_i) that passing through branch “j” from bus “i” to bus “i+1” given as:

\[P_i = P_{i+1} + r_j \left(\frac{P_{i+1}^2 + Q_{i+1}^2}{V_{i+1}^2} \right) \]

\[Q_i = Q_{i+1} + x_j \left(\frac{P_{i+1}^2 + Q_{i+1}^2}{V_{i+1}^2} \right) \]

The voltage value and angle at each bus are determined in forward method. Assume a voltage \(V_i \angle \delta_i \) at node “i” and \(V_{i+1} \angle \delta_{i+1} \) at node “i+1” then the current “I_j” pass through the section having an impedance (\(Z_j = r_j + jx_j \)) represent the overhead line section parameters as:

\[I_j = \frac{V_i \angle \delta_i - V_{i+1} \angle \delta_{i+1}}{r_j + jx_j} \]

(3)

The math formula for total real and reactive power for radial distribution system (RDS) with and without the impact of adding DG that will evaluate the behavior of system and the change that happen through this equations :[6]

Total real power loss (TPL)
\[= \sum_{j=1}^{Nb} \frac{r_j (P_i^2 + Q_i^2)}{V_i^2} \]

(4)

Total reactive power loss (TQL)
\[= \sum_{j=1}^{Nb} \frac{x_j (P_i^2 + Q_i^2)}{V_i^2} \]

(5)

The loss reduction in network problem is formulated as:
\[= min \sum_{i=1}^{Nb} \frac{P_i^2 + Q_i^2}{V_i^2} \]

(6)

3. Constraints

- Power balance constraint
- Real power limits \(P_{DG, Min} \leq P_{DG} \leq P_{DG, MAX} \)
- Reactive power limits \(Q_{DG, Min} \leq Q_{DG} \leq Q_{DG, Max} \)
- Voltage deviation limits at each bus:
 - \(0.95 \leq V_i \leq 1.05 \)
- Capacity limits of branch distribution due thermal limits and design consideration for distribution equipment:
 - \(S_{ij} \leq S_{ij, max} \)
 - \(S_{ij} = \) apparent power flow for section i, j
 - \(S_{ij} = \) Maximum apparent power flow for section i, j
- Radial structure (topography of network).

4. Optimum Configuration Network Algorithm

Configuration changeable may be performed by changing the status of network switches (open/close), in such a way that radially is always re-established after the proposed solution method starts with a meshed distribution system obtained by considering all switches closed. Then, the switches are opened successively to eliminate the loops. The opening criterion is based on minimum total power loss increase, and this is determined using a “Load-Flow program”, as shown in Figure 2.
5. Optimal DG placement Algorithm
Genetic algorithms work by optimizing the fitness function. When applying Genetic Algorithms to optimize the DG placement and sizing problems, an important thing is the coding of the potential solutions. The initial population (coded variables) is the candidate
ratings and siting of DG units. Each chromosome is represented by a vector. The chromosome coding in this study as seen in Figure 4 is defined as bus number and DG capacities.

Bus-n is a discrete number between 1 and the total number of buses. P_{DG-n} is continuous numbers ranging from zero to the maximum value of DG capacity (MW). Genetic Algorithm searches for the best answer in a continuous way between boundary limits; consequently the optimal case is GA output. GA methodology discussed above is implemented using the following steps:

Step 1: (Initialization): Generates random-ly n chromosomes for position and size of DG.

Step 2: (fitness): evaluate each chromosome in the initial population using the objective function, J. search for the best value of the objective function J best. Set the chromosome associated with J best as the global best.

Step 3: (“new population”): create a new population by repeating the following procedure until the new population is accomplished:

- **Selection:** choose two parent chromosomes from a population according to their fitness.
- **Crossover:** with a cross-over probability, cross-over the parents to form a new child.
- **Mutation:** with a mutation probability approach mutates new child at each chromosome.
- **Acceptance:** put new child in a new population.

Step 4: (Re-placement): use new generated population for a further run of algorithm.

Step 5: If the fitness function is fulfilled then stop, else move to step 2 [7].

The GA parameters used in the present work given as:

- Population size: 25 max .Generation:100
- Cross over rate: 0.01 type of selection: Roulette Wheel
- Mutation rate: 0.07 type of cross over: Arithmetic

Figure 4 shows the flow chart of optimal sitting and sizing of distributed generation.
6. Simulation Results and Discussion

I. Test system and Al-Jihad District distribution system:

The proposed approaches have been tested on IEEE 33-Bus and AL-JIHAD Neighborhood distribution system. These systems are simulated by implemented in Cyme programs and MATLAB programming (GAs) using personal computer with CORE-i3 processor having 2.4 GHz speed and 3GB RAM.

IEEE 33-bus test system:

A single line diagram of the 12.66 kV, 33-bus test radial distribution system is shown in Figure 5. It has one feeder with three different laterals, 32 branches and a total peak load of 3715 kW and 2300 kVAR. The total active loss power of the base case system is 202.20 kW. The base configuration of the system is having 5 loops or tie switches (switches 33–37) which are kept normally open is shown in dotted lines which is closed only during fault condition to maintain continuity of supply or can be closed to change circuit resistance to reduce losses. Table 1 illustrate the line and load data of IEEE-33 test system.

<table>
<thead>
<tr>
<th>Sec. No.</th>
<th>Sending bus</th>
<th>Receiving bus</th>
<th>Section resistance R (ohm)</th>
<th>Section reactance X (ohm)</th>
<th>Receiving bus active power P (kW)</th>
<th>Receiving bus reactive power Q (kVAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S_N_1</td>
<td>1</td>
<td>0.0922</td>
<td>0.0470</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.4930</td>
<td>0.2511</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0.3660</td>
<td>0.1864</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0.3811</td>
<td>0.1941</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>0.8190</td>
<td>0.7070</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>6</td>
<td>0.1872</td>
<td>0.6188</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>7</td>
<td>0.7114</td>
<td>0.2351</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>8</td>
<td>1.0300</td>
<td>0.7400</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>9</td>
<td>1.0440</td>
<td>0.7400</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>10</td>
<td>0.1966</td>
<td>0.0650</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>11</td>
<td>0.3744</td>
<td>0.1238</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>12</td>
<td>1.4680</td>
<td>1.1550</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>13</td>
<td>0.5416</td>
<td>0.7129</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>14</td>
<td>0.5910</td>
<td>0.5260</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>15</td>
<td>0.7463</td>
<td>0.5450</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>16</td>
<td>1.2890</td>
<td>1.7210</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>17</td>
<td>0.7320</td>
<td>0.5740</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
<td>0.1640</td>
<td>0.1565</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>19</td>
<td>1.5042</td>
<td>1.3554</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>20</td>
<td>0.4095</td>
<td>0.4784</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>21</td>
<td>0.7089</td>
<td>0.9373</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>22</td>
<td>0.4512</td>
<td>0.3083</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>23</td>
<td>0.8980</td>
<td>0.7091</td>
<td>420</td>
<td>200</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>24</td>
<td>0.8960</td>
<td>0.7011</td>
<td>420</td>
<td>200</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>25</td>
<td>0.2030</td>
<td>0.1034</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
<td>26</td>
<td>0.2842</td>
<td>0.1447</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>27</td>
<td>1.0590</td>
<td>0.9337</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>28</td>
<td>27</td>
<td>28</td>
<td>0.8042</td>
<td>0.7006</td>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
<td>29</td>
<td>0.5075</td>
<td>0.2585</td>
<td>200</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>30</td>
<td>0.9744</td>
<td>0.9630</td>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>31</td>
<td>0.3105</td>
<td>0.3619</td>
<td>210</td>
<td>100</td>
</tr>
<tr>
<td>32</td>
<td>31</td>
<td>32</td>
<td>0.3410</td>
<td>0.5302</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>20</td>
<td>2.000</td>
<td>2.000</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>34</td>
<td>8</td>
<td>14</td>
<td>2.000</td>
<td>2.000</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>35</td>
<td>11</td>
<td>21</td>
<td>2.000</td>
<td>2.000</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>36</td>
<td>17</td>
<td>32</td>
<td>0.5000</td>
<td>0.5000</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>37</td>
<td>24</td>
<td>25</td>
<td>0.5000</td>
<td>0.5000</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
AL-JIHAD distribution network
AL-Jihad neighborhood is located in the south-west of the city of Baghdad, where the feed own secondary power station consist of 14 feeders, two of them for special purpose other than residential belongs to feed the Baghdad airport road and by examining the feeders loads will notice exceed the permissible limits (including in the design tables for overhead lines and cable conductors according to MOE of Iraq) therefore AL-Jihad district is considered among the worst cases in electrical power losses and for this reason have been selected. Figure (6) shows initial configuration of AL-Jihad distribution system.

II. Optimal configuration network
The proposed approach will test on 33-bus and on AL-JIHAD distribution system.

Case (1): IEEE 33-bus test system:
Table (2) illustrate the changes after applying the network configuration optimization by opening/closing the sectionalizing and tie switches that give a solution for power loss reduction as well as voltage improvement by using Cymdist tool.

<table>
<thead>
<tr>
<th>Item</th>
<th>Base case</th>
<th>Reconfiguration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Power Loss(KW)</td>
<td>202.53</td>
<td>117.07</td>
</tr>
<tr>
<td>V_{min}(p.u)</td>
<td>0.917</td>
<td>0.95</td>
</tr>
<tr>
<td>Switches Opened</td>
<td>33,34,35,36,37</td>
<td>7,9,14,28,32</td>
</tr>
</tbody>
</table>

Figure 5: The configuration of the 33-bus radial distribution system [8]

Figure 6: Initial configuration of JIHAD distribution system
Based on these results it show that the real power losses after applying optimal configuration network analysis is reduced about 42.19% and p.u voltage level of system raise from 0.917 to 0.95 p.u. Figure 6 shows voltage profile for each bus whereon the results show the different voltage level for default case and after change topography of distribution network for proposed method, pre switching optimization placement the voltage level from 7-18 are Low. After network configuration the voltage level of those buses are improved.

![Figure 6: Voltage profile for each bus.](image)

Figure 6: Voltage profile for each bus.

To show the effectiveness of the proposed method (optimal re-configuration network) the results are compared with proposed work of Ref. [9]. The real power loss, voltage profile and open switches are illustrate in Table 3. It can be observed that, the results obtained by the proposed method is the best, whereon minimize the number of abnormal conditions (low voltage, high voltage and overload) to zero.

<table>
<thead>
<tr>
<th>Item</th>
<th>Proposed method</th>
<th>Proposed of Ref. [9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Power Loss (kW)</td>
<td>117.07</td>
<td>139.5</td>
</tr>
<tr>
<td>Real Power Loss%</td>
<td>42.19</td>
<td>31.16</td>
</tr>
<tr>
<td>V_{min} (P.U)</td>
<td>0.95</td>
<td>0.9343</td>
</tr>
<tr>
<td>Open Switches</td>
<td>7,9,14,28,32</td>
<td>7,9,14,32,37</td>
</tr>
</tbody>
</table>

Table 3: Comparison simulation results of 33-bus after optimal configuration analysis

Case (2): AL-Jihad neighborhood distribution system

Table (4) illustrate the real power loss (kW), voltage level (p.u) and open switches before and after validate and examine optimal configuration network analysis by opening/closing the sectionalizing and tie switches with satisfying all constrains.

<table>
<thead>
<tr>
<th>Item</th>
<th>Base case</th>
<th>Re-configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Power Loss (kW)</td>
<td>730.61</td>
<td>625.41</td>
</tr>
<tr>
<td>V_{min} (P.U)</td>
<td>0.949</td>
<td>0.949</td>
</tr>
<tr>
<td>Open Switches</td>
<td>11KV_JIHAD_1_5</td>
<td>11KV_JIHAD_1_12</td>
</tr>
<tr>
<td></td>
<td>11KV_JIHAD_1_6</td>
<td>11KV_JIHAD_4_10</td>
</tr>
<tr>
<td></td>
<td>11KV_JIHAD_1_55</td>
<td>11KV_JIHAD_4_110</td>
</tr>
<tr>
<td></td>
<td>11KV_JIHAD_1_56</td>
<td>11KV_JIHAD_5_5</td>
</tr>
<tr>
<td></td>
<td>11KV_JIHAD_5_42</td>
<td>11KV_JIHAD_7_87</td>
</tr>
<tr>
<td></td>
<td>11KV_JIHAD_7_80</td>
<td>11KV_JIHAD_7_96</td>
</tr>
<tr>
<td></td>
<td>11KV_JIHAD_8_84</td>
<td>11KV_JIHAD_7_102</td>
</tr>
<tr>
<td></td>
<td>11KV_JIHAD_9_21</td>
<td>11KV_JIHAD_8_72</td>
</tr>
<tr>
<td></td>
<td>11KV_JIHAD_11_63</td>
<td>11KV_JIHAD_11_51</td>
</tr>
</tbody>
</table>

Table 4: Simulation results for AL-Jihad distribution system after Re-configuration network
The results obtained show following notes:
1. The real power loss after optimal configuration network analysis become 625.41 and reduced about 14.398%.
2. No change occur in voltage level of system after apply Re-configuration technique.

Figure (8) shows the difference in real power losses before and after optimal configuration network analysis.

![JIHAD NEIGHBORHOOD LOSSES](image)

Table 5: Simulation results of 33-bus without and with DG placement

<table>
<thead>
<tr>
<th>Item</th>
<th>Location (Bus No.)</th>
<th>Size (kW)</th>
<th>Power Loss(kW) Using proposed method GA</th>
<th>Power Loss(kW) Using Cymdist Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without DG</td>
<td>-----</td>
<td>----</td>
<td>202.895</td>
<td>4</td>
</tr>
<tr>
<td>1 DG</td>
<td>6</td>
<td>3715</td>
<td>121.352</td>
<td>1</td>
</tr>
<tr>
<td>2 DG</td>
<td>13</td>
<td>792.5</td>
<td>100.831</td>
<td>1</td>
</tr>
<tr>
<td>3 DG</td>
<td>24</td>
<td>1100</td>
<td>73.2141</td>
<td>3</td>
</tr>
<tr>
<td>3 DG</td>
<td>30</td>
<td>1086</td>
<td>72.73</td>
<td></td>
</tr>
</tbody>
</table>

The results show that the total power losses without DG units in its highest value is 202.53 kW, but after the optimal size DG units are connected in the optimal locations on the distribution test system, the total active power loss for one, two and three DG units in its highest value became (120.83, 100.13, 72.73 kW respectively). Thus there is a reduction power loss about 40.339%, 50.56%, 64.089% of the total active power losses in the system because the increasing in delivered power to the network provides from DGs that connected near some loads.

The improvement in bus voltage level of the system shown in Figure (9) without and with DG placement.

![Voltage profile before and after 3-DG placement](image)
It is observed that in all the cases the voltage profile improves, when the number of DG units installed in the system are increased except third case depict A small change in voltage level after install three DG, while satisfy all the current and voltage constraints. To show the effectiveness of the proposed method the results are compared with those obtained in Table (6).

Table (6): Comparison results of IEEE-33 bus system after DG placement

<table>
<thead>
<tr>
<th>Proposed method (GA)</th>
<th>Proposed method of Ref.[10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location (Bus Number)</td>
<td>Size (kW)</td>
</tr>
<tr>
<td>13</td>
<td>792.5</td>
</tr>
<tr>
<td>24</td>
<td>1100.3</td>
</tr>
<tr>
<td>30</td>
<td>1086</td>
</tr>
</tbody>
</table>

Case (2): AL-Jihad district distribution system: Nowadays the increasing demand in Iraqi distribution network and load as a result of natural population increase with the age of the network, which requires the development of distributed systems. This factor causes further voltage drop, increased losses, as a result reduction of the bus voltage stability and load imbalance. Therefore, the usage of distributed generations (DGs) has been increased. The simulation results obtained in Table (7) illustrate the real power losses without and with DG placement and its siting and size.

Table 7: Simulation results of AL-Jihad network without and with DG placement

<table>
<thead>
<tr>
<th>Item</th>
<th>Location (Bus No.)</th>
<th>Size (kW)</th>
<th>Power Loss (kW) Using proposed method GA</th>
<th>Power Loss (kW) Using Cymdist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without DG</td>
<td>-----</td>
<td>-----</td>
<td>730.03</td>
<td>730.61</td>
</tr>
<tr>
<td>1 DG</td>
<td>Jihad 14-32</td>
<td>3754</td>
<td>478.891</td>
<td>481.45</td>
</tr>
<tr>
<td>2 DG</td>
<td>Jihad 12-49, Jihad 5-24</td>
<td>1100.45</td>
<td>2145.57</td>
<td>467.347</td>
</tr>
<tr>
<td></td>
<td>Jihad 14-30, Jihad 7-90</td>
<td>2754</td>
<td>3100.3</td>
<td>457.891</td>
</tr>
<tr>
<td>3DG</td>
<td>Jihad 11-66</td>
<td>2145.57</td>
<td>467.347</td>
<td>469.89</td>
</tr>
<tr>
<td></td>
<td>Jihad 14-30, Jihad 7-90</td>
<td>2754</td>
<td>3100.3</td>
<td>457.891</td>
</tr>
<tr>
<td></td>
<td>Jihad 11-66</td>
<td>2145.57</td>
<td>467.347</td>
<td>469.89</td>
</tr>
</tbody>
</table>

The results show that the total power losses without DG units in its highest value is 730.61 kW, but after the optimal size DG units are connected in the optimal locations on the distribution test system, the total active power loss for one, two and three DG units in its highest value became (478.891, 467.347, 457.891 kV respectively). Thus there is a reduction power loss about 34.57%, 36.03%, 37.327% of the total active power losses in the system because the increasing in delivered power to the network provides from DGs that connected near some loads. The improvement in bus voltage level of AL-Jihad distribution system shown in Figure (10) whereon small difference in voltage level between adding three DG appear.

Figure 10: Voltage profile for AL-Jihad distribution system after 3 DG

IV. Optimal reconfiguration with optimum (DG) placement:

Case (1): IEEE-33 bus test system: Based on proposed method the simulation results obtained in Table (8) illustrate and reviewing several scenarios for real power loss, locations of DG and open switches.

Table 8: Simulation results of 33-bus after DG placement with re-configuration

<table>
<thead>
<tr>
<th>Item</th>
<th>Power Loss (kW)</th>
<th>Location Bus No.</th>
<th>Switches Opened</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG only</td>
<td>72.73</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>Re-configuration only</td>
<td>117.07</td>
<td>----</td>
<td>7,9,14, 28,32</td>
</tr>
<tr>
<td>Re-configuration with DG placement</td>
<td>52.34</td>
<td>13</td>
<td>24</td>
</tr>
</tbody>
</table>
The base case power flow gives the total real power loss 202.53 kW but after optimal configuration network kW losses become 117.07 and when apply DG placement after re-configuration as scenario more effective total power loss fell to 52.34 kW with reduction reach to (74.157%). The improvement in bus voltage level of system based on apply this proposed method shown in Figure (11).

Case (2): AL-Jihad neighborhood distribution system:
Simulate AL-Jihad network in Cyindist software, run the load flow analysis without DG, and with connected DGs in the locations which gained from GA and dependable sizes, in different numbers as steps one, two and three DGs and then apply optimal configuration network analysis to obtain results report that illustrate in Table (9). In each time repeated load flow analysis to determine the active power losses and compare with the results obtained from MATLAB.

![Figure 11: Voltage profile of IEEE-33 test system](image)

Table 9: simulation results of AL-JIHAD distribution system

<table>
<thead>
<tr>
<th>Item</th>
<th>Power Loss (kW)</th>
<th>Location (Bus No.)</th>
<th>Switches Opened</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG only</td>
<td>461.45</td>
<td>JIHAD 14-30</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JIHAD 7-90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JIHAD 11-66</td>
<td></td>
</tr>
<tr>
<td>Reconfiguration Only</td>
<td>625.41</td>
<td>----</td>
<td>JIHAD 1_12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 4_10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 4_110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 5_5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 7_87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 7_96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 7_102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 8_72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 11_51</td>
</tr>
<tr>
<td>Re-configuration with DG siting</td>
<td>408.39</td>
<td>JIHAD 14-30</td>
<td>JIHAD 8_72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JIHAD 7-90</td>
<td>JIHAD 4_14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JIHAD 11-66</td>
<td>JIHAD 11_49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 5_5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 7_67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 5_15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 11_66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JIHAD 1_12</td>
</tr>
</tbody>
</table>

The results showed that the combination of the distributed generation allocation with the reconfiguration provided lower losses reach to 408.39 kW than non-combined applications of these techniques. The obtained results were very effective, and the computation efforts were feasible for power systems optimization, requiring a non-prohibitive number of power flow simulations. Therefore, the proposed methodology has a potential application for the optimization of large electric distribution systems. Losses reduction become (44.103%) of its initial value. The changes that have arisen in the improvement of the efficiency of AL-Jihad distribution system after the optimal location and
size of the generators and the application of better topography of the network will reflect positively on the delivery of voltage and frequency standard within the borders of the Ministry of the Iraqi electricity (MOE). the improvement of bus voltage level shown in Figure (12).

![Figure 12: Voltage profile of AL.-Jihad distribution system](image)

7. Conclusions

1. It is clear from the simulation results that the optimal DG placement technique consider the better solution for reduction losses as well as maximize bus voltage level with respect to cost and space in case of AL.-Jihad distribution network (Baghdad distribution sector).
2. The DG location and sizing problem are formulated as an optimization problem based on genetic algorithm, GA intelligent technique is dedicated successfully for optimal sizing and allocation of DG.
3. The DGs have considerable effect in power losses minimization and improved of the voltage profile and utilized many DG with optimum location and size are preferable than one DG.
4. Implementation of Re-configuration with DG placement provide the best mean of power losses reduction and voltage improvement.

References

Author(s) biography

Dr. I. I. Ali received her B.S. degree in Electrical Engineering from Electrical Engineering Department, University of Technology, Baghdad, Iraq in 1996. She received her M.Sc. degree and Ph.D. degree in Power System Engineering from Electrical Engineering Department, University of Technology, Iraq in 2001 and 2009, respectively. Currently, she is lecturer at the University of Technology. Her research interests include power system stability, power system control, FACTS devices, power quality improvement and renewable energy.

O. Y. Saeed received his B.S. degree in Electrical Engineering from Electrical Engineering Department, University of Technology, Iraq in 2008. He received his M.Sc. degree in Power System Engineering from Electrical Engineering Department, University of Technology, Iraq in 2017.